Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids

نویسندگان

  • Shaoping Xiao
  • Weixuan Yang
چکیده

In this study, we develop a temperature-related Cauchy–Born (TCB) rule for multiscale modeling of crystalline solids based on the assumptions that deformation is locally homogeneous and atoms have the same local vibration mode. When employing the TCB rule in the nanoscale continuum approximation, the first Piola–Kirchhoff stress can be explicitly computed as the first derivative of the Helmholtz free energy density to the deformation gradient. Since the Helmholtz free energy is temperature-dependent, multiscale methods consisting of the TCB rule embedded continuum model can be used to elucidate temperature-related physical phenomena at the nanoscale. Stress analyses of canonical ensembles verify the continuum approximation with the TCB rule by comparing the calculated Cauchy stresses with the outcomes of molecular dynamics simulations. As an application of the TCB rule in multiscale modeling, the nanoscale meshfree particle method with the TCB rule demonstrates the same crack propagation phenomenon in a nanoplate as molecular dynamics. This example shows that the temperature effects are significant on the crack propagation speed when the temperature is in a particular range. 2005 Elsevier B.V. All rights reserved. PACS: 02.70.Ns; 46.15. x; 61.82.Rx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cauchy-born Rule and the Stability of Crystalline Solids: Dynamic Problems

We study continuum and atomistic models for the elastodynamics of crystalline solids at zero temperature. We establish sharp criterion for the regime of validity of the nonlinear elastic wave equations derived from the well-known Cauchy-Born rule.

متن کامل

Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems

We study the connection between atomistic and continuum models for the elastic deformation of crystalline solids at zero temperature. We prove, under certain sharp stability conditions, that the correct nonlinear elasticity model is given by the classical Cauchy–Born rule in the sense that elastically deformed states of the atomistic model are closely approximated by solutions of the continuum ...

متن کامل

A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations

A new homogenization technique, the temperature-related Cauchy–Born (TCB) rule, is proposed in this paper with the consideration of the free energy instead of the potential energy. Therefore, temperature effects at the nanoscale can be investigated using continuum approximation with the implementation of the TCB rule. The TCB rule is verified via stress analyses of several crystalline solids. T...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Positive Definiteness of the Blended Force-Based Quasicontinuum Method

The development of consistent and stable quasicontinuum models for multidimensional crystalline solids remains a challenge. For example, proving the stability of the force-based quasicontinuum (QCF) model [M. Dobson and M. Luskin, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 113–139] remains an open problem. In one and two dimensions, we show that by blending atomistic and Cauchy–Born continu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006